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Summary

In experiments involving many variables investigators typically use multiple

comparisons procedures to determine differences that are unlikely to be the re-

sult of chance. However, investigators rarely consider how the magnitude of the

greatest observed effect sizes may have been subject to bias resulting from multi-

ple testing. These questions of bias become important to the extent investigators

focus on the magnitude of the observed effects. As an example, such bias can

lead to problems in attempting to validate results if a biased effect size is used

to power a follow-up study. An associated important consequence is that confi-

dence intervals constructed using standard distributions may be badly biased. A

bootstrap approach is used to estimate and adjust for the bias in the effect sizes

of those variables showing strongest differences. This bias is not always present;

some principles showing what factors may lead to greater bias are given and a

proof of the convergence of the bootstrap distribution are provided.
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1. Introduction

Most considerations involving multiple comparisons problems focus upon the

increased probability of false positive errors when the null hypothesis is true. Here

the focus is upon the distorting effects of multiple comparisons in evaluating those

variables judged to show the strongest effects or differences between groups. These

distortions may be present both when the null hypothesis of no difference is true

as well as when it is false.

This bias can be relevant in some circumstances. If a power analysis is employed

for a follow-up study the study will likely be underpowered if overestimation bias is

present. Further, a follow-up study may be difficult to mount and the preliminary

study may provide the best point estimate and this estimate should be deflated if

bias is present. In genetic epidemiology marker studies there is sometimes interest

in assessing the strength of a marker’s association – if the strength is low it may

not be worth performing a fine-mapping or other follow-up study. Also, confidence

intervals for the point estimate will reflect the degree of bias affecting the estimate.

Recent work by genetic epidemiologists (e.g. Sun and Bull, 2005 and Siegmund,

2002) has focused upon this bias problem in the context of estimating the pres-

ence and magnitude of genetic marker effects in genome-wide scans. The former

study examines bootstrap and cross-validation approaches similar to that pro-

posed here though in the present work more attention is paid to estimating the

entire distribution of overestimation and determining confidence intervals. The

latter reference puts forth an analytical approach that is highly dependent upon

the genetic model that is assumed and therefore appears to be restricted largely to
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genetic marker studies. Also, both of these papers posit the overestimation arises

from truncation bias related to the significance threshold for declaring significance

– here a different presentation of bias is described that is given without reference

to a significance threshold. The basic idea is that observed outcomes are com-

posed of random and deterministic components and under some circumstances

the fact that one outcome performs best may suggest the random component

for that outcome was unusually beneficial and this ’good luck’ is associated with

overestimation of the true effect. Determining when such circumstances exists

and measuring their distortion is the focus of this paper.

2. Illustrations of the Problem

An elementary two-group t−test applied to a number variables will be used to

illustrate some principles. A simple examination of gene expression differences

between healthy and diseased individuals could give rise to such a design.

We assume each of two groups has n individuals, a total of G variables (e.g.

genes) are measured, and for variable j we denote the n response measures as Xij

in group 1 and Yij in group 2 for i ∈ {1 . . . n} and j ∈ {1 . . . G}. Let dj = x̄j−ȳj, σj

denote the common standard deviation for Xij and Yij and sj denote the pooled

estimate of σj. If µj = EXij − EYij denotes the average difference for the jth

variable then the t−statistic may be written as

tj =

√
n(x̄j − ȳj)√

2 sj

=

√
n d̄j√
2 sj

(2.1)

=

√
n

(
d̄j − µj

)
√

2 sj

+

√
n µj√
2 sj

(2.2)

= τj +

√
n µj√
2 sj

where τj =

√
n

(
d̄j − µj

)
√

2sj

. (2.3)
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τj is a realization of a random variable with a t−distribution having 2n−2 degrees

of freedom. The distinction between t and τ is that the latter has a t−distribution

(centered about 0) regardless of whether the null hypothesis, µj = 0, is true.

One sees in (2.3) that the degree to which the sample difference, d̄j, exceeds

the true difference, µj, is associated with the magnitude of τj. This degree of

overestimation expressed by τj is of primary interest in this paper. Of interest is

the distribution of τj when it corresponds to a gene with an extreme tj value. Let

r1, r2, . . . , rG denote the indices associated with the smallest to largest t−statistics

so that tr1 ≤ tr2 ≤ · · · ≤ trG
. While τj has a t-distribution marginally, this is

generally no longer the case when we condition on j corresponding to an extreme

τj value. It is impossible to know in general the distribution of

τr1 =

√
n

(
d̄r1 − µr1

)
√

2 sr1

or τrG
=

√
n

(
d̄rG

− µrG

)
√

2 srG

(2.4)

and hence the degree to which d̄r1 underestimates µr1 (or d̄rG
overestimates µrG

).

Situations in which E [τrG
] > 0 are consistent with E

[
d̄rG

]
> µrG

and in this way

reflect bias in the estimated mean or effect size. As an aside it should be noted

that the distribution of τrG
may also be driven by small values of the sj terms.

In terms of confidence intervals, näıve application of a t−test distribution can

be misleading, e.g. the interval for µrG
given by d̄rG

± t−1
.975,2n−2

√
2srG√

n
is likely to

systematically overestimate µrG
; this will be demonstrated in simulations below.

As µrG
is unknown, one cannot directly estimate the distribution of

τrG
=

√
n

(
d̄rG

− µrG

)
√

2 srG

. (2.5)
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The bootstrap techniques popularized by Efron (e.g. Efron, 1979) will be used

to develop alternative confidence intervals that compensate for the bias described

above. To proceed one first constructs a bootstrap sample from the Xij, Yij by

sampling individuals with replacement from these two-group data in a stratified

manner, i.e. sampling from the Xi. = {Xi1, . . . , XiG} and Yi. = {Yi1, . . . , YiG}

separately. One samples each individual’s entire data, not the individual variables

separately. From here one obtains bootstrap samples X∗
ij and Y ∗

ij and can compute

associated bootstrap statistics d̄∗j , s
∗
j , and t∗j . For a particular bootstrap sample

designated by the ∗ superscript, let r∗1, r
∗
2, . . . , r

∗
G order the t statistics, t∗j , i.e.

t∗r∗1 ≤ t∗r∗2 ≤ · · · ≤ t∗r∗G . Then compute τ ∗r∗G =

√
n

(
d̄∗r∗G − d̄r∗G

)
√

2 s∗r∗G

(2.6)

or τ ∗r1∗
or any other ordered τ ∗ of interest. One may produce and process many

bootstrap samples in this way and obtain an empirical distribution of τ ∗r∗G . The

hope is that the unknown distribution of τrG
may be approximated by that of τ ∗r∗G .

In considering the terms

τrG
=

√
n

(
d̄rG

− µrG

)
√

2 srG

and τ ∗r∗G =

√
n

(
d̄∗r∗G − d̄r∗G

)
√

2 s∗r∗G

(2.7)

the idea is that the degree to which d̄rG
exceeds µrG

can be approximated by the

degree to which d̄∗r∗G exceeds d̄r∗G
. In other words, r∗G is treated like rG, d̄r∗G

like

µrG
, and d̄∗r∗G like d̄rG

. Once an empirical distribution of τ ∗r∗G is obtained, denoted

by F ∗, one may use the percentiles, F ∗−1 to create confidence intervals for µrG
as

before, e.g.

µrG
satisfying

[
F ∗−1

.025 ≤
√

n
(
d̄rG

− µrG

)
√

2srG

≤ F ∗−1
.975

]
(2.8)
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where d̄rG
and srG

are observed from the original data. For this procedure a second

order bootstrap may also be employed to improve the approximation of F−1 by

F ∗−1 where F−1 denotes the cdf of τrG
. This involves creating a further number of

bootstrap samples and associated statistics from each first level bootstrap sample.

Details of this nested percentile approach and an R program implementing it are

available at http://data.ninds nih.gov/Jeffries/multcomps/index.htm.

Table 1 indicates how this approach works in terms of confidence intervals for

µrG
in a simulation context. Here n = 14 in each group and G=444. Each vari-

ables has an effect size chosen from the set {2/444, 4/444, . . . , 886/444, 888/444}.

The idea is that this may correspond to about 2% of approximately 22, 200 genes

being differentially expressed and the genes/variables are constructed as indepen-

dent for convenience. Rather than perform tests on all 22, 200 variables attention

was restricted to those differentially expressed to make the second order bootstrap

computations feasible. Values of d̄rG
and µrG

were obtained from each simulation.

Further the two-stage bootstrap algorithm was implemented and confidence inter-

vals of varying nominal coverage were constructed. Table 1 gives characteristics of

the coverage of these bootstrap intervals and intervals constructed using the näıve

t-statistic approach. The results show that the näıve t-statistic intervals fail to

cover very often and the bootstrap approach is better. Also worth noting is that

the bootstrap intervals are about 20% longer. Though wider, this is not the pri-

mary reason the bootstrap covers better – instead it is due to the overestimation

correction as expanding the t−statistic regions by 20% will increase the coverage

probabilities to only 5%, 19%, 36%, and 55% for the four different intervals.
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Nominal Bootstrap t-statistic Average Average

Interval Coverage % Coverage % Bootstrap Length t-statistic Length

25th − 75th 50% 3% .48 .39

10th − 90th 81% 12% .90 .75

5th − 95th 91% 22% 1.18 .97

2.5th − 97.5th 96% 36% 1.42 1.17

Table 1. Confidence Interval Characteristics for µrG
with n=14,

G=444, Effect Sizes Evenly spaced in (0, 2], 1000 simulations

A second set of simulations was run with a much smaller number of vari-

ables/genes. Here the interest is in evaluating overestimation when a more modest

number of comparisons are involved. Here n = 14, there are G = 10 indepen-

dent variables, and the effect sizes are chosen at evenly spaced intervals between

0 and 1. Table 2 provides confidence interval characteristics for the bootstrap

and t-statistic approaches. Here we see the näıve approach performs better

though some distortion is still present. In this case the bootstrap intervals are of

comparable length with good coverage characteristics.

A third set of simulations (see Table 3) was run to show when overestimation

is not a problem the bootstrap approach yields coverage and confidence interval

lengths comparable to those produced by the näıve approach. In these simulations

one of the 10 effect sizes was chosen to be 3 and the other 9 were set to 0. In

all 1000 simulations the variable with the large effect size generated the largest

t−statistic and in this case there was no overestimation problem. From the
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Nominal Bootstrap t-statistic Average Average

Interval Coverage % Coverage % Bootstrap Length t-statistic Length

25th − 75th 49% 34% 0.49 0.48

10th − 90th 77% 54% 0.96 0.93

5th − 95th 88% 74% 1.25 1.21

2.5th − 97.5th 93% 84% 1.53 1.45

Table 2. Confidence Interval Characteristics for µrG
with n=14,

G=10, Effect Sizes evenly spaced in (0, 1], 1000 simulations

Nominal Bootstrap t-statistic Average Average

Interval Coverage % Coverage % Bootstrap Length t-statistic Length

25th − 75th 48% 50% 0.52 0.51

10th − 90th 79% 78% 1.00 1.00

5th − 95th 89% 89% 1.32 1.27

2.5th − 97.5th 94% 94% 1.61 1.54

Table 3. Confidence Interval Characteristics for µrG
with n=14,

G=10, Effect Sizes are {3, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 1000 simulations

data in Tables 1, 2, and 3 some generalizations may be drawn. First, the näıve

estimate often performs badly – particularly as the number of variables/genes

grows. The coverage probabilities in Table 1 give some indication of how poorly

the common näıve approach performs under circumstances that may not be atyp-

ical in a microarray context. Table 2 shows problems still remain for the näıve

approach when the number of variables is reduced. In Table 3 one sees that in
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some circumstances when there is little overestimation the bootstrap and näıve

approaches perform appropriately and similarly.

3. Conclusion

In multiple testing situations, when one examines the variable/test with largest

observed effect size, it is more likely there exists a large random component that

leads to an overestimation of the associated effect size. This bias is potentially

present whenever attention is focused upon the most extreme results among a

number of tests. The problem is not alleviated by corrections made to address

the number or proportion of Type I errors. While multiple comparisons corrections

and false discovery rate approaches affect the choice of which variables may reflect

significant changes, they do not address distortions in the associated magnitudes

of change. Such problems become important when 1) an estimate of effect size

is used to power a follow-up study, 2) comparing results across different studies

and finding discrepancies in the strength of those variables showing greatest dif-

ferences, or 3) contemplating further action based on initial study (e.g. follow-up

fine-mapping study). Further, the traditional confidence intervals may be badly

biased in such circumstances. The results indicate the bootstrap approach may

be able to distinguish instances when such bias does and does not exist and as-

sociated confidence intervals are less prone to overestimation than those derived

from a näıve t−statistic approach.

Supplemental materials at http://data.ninds.nih.gov/Jeffries/multcomps/index

.htm provide 1) a more complete description of the two-stage bootstrap approach
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used here, 2) asymptotic justification for applying the bootstrap in these situ-

ations, and 3) analysis showing which factors exacerbate this bias. Mitigating

factors are increased sample size and greater distinction among the most extreme

effect sizes.
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