
1. Details of Bootstrapping Approaches

This note gives more of the details regarding the double bootstrap approach used

to estimate the distribution of

τrG
=

√
n
(
d̄rG

− µrG

)
√

2 srG

. (1)

Because µrG
is unknown a simple bootstrap approach would be to treat r∗Glike rG,

d̄r∗G
like µrG

, s∗r∗G like srG
, and d̄∗r∗G like d̄rG

and estimate

τ ∗r∗G =

√
n
(
d̄∗r∗G − d̄r∗G

)
√

2 s∗r∗G

(2)

where the ∗ terms indicate these are observed values from a bootstrap generated

sample. As all terms in (2) are known one can generate many bootstrap samples

and empirically estimate the distribution of τ ∗r∗G .

In practice this basic approach does not fully remove bias and some modifi-

cations using a double bootstrap approach can improve the situation somewhat.

A bias correction and a nested percentile approach using this double bootstrap

were both examined – the results in the paper correspond to the nested percentile

approach.

Let X∗
ij, j = 1 . . . G denote the values from the ith individual/microarray chosen

in a bootstrap resampling procedure for one group and Y ∗
ij , j = 1 . . . G denote the

analogous resampling in the second group. Given a bootstrap sample one can

obtain a second nested bootstrapped sample (still stratifying the bootstrapping

within the two groups) with typical elements X∗∗
ij and Y ∗∗

ij . The terms d̄∗∗j , and s∗∗j

are group differences and pooled standard deviations calculated from the nested
1
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bootstrap sample. Analogously, r∗∗G is the index of the largest of the t−tests

(t∗∗1 , t∗∗2 , . . . , t∗∗G ) that is computed and

τ ∗∗r∗∗G
=

√
n
(
d̄∗∗r∗∗G

− d̄∗r∗∗G

)
√

2 s∗∗r∗∗G

.

A simple bootstrap bias correction can be implemented by approximating the

bias between F ∗ and F by the estimated bias between F ∗∗ and F ∗ where

F is distribution of τrG
=

√
n
(
d̄rG

− µrG

)
√

2 srG

, (3)

F ∗ is distribution of τ ∗r∗G =

√
n
(
d̄∗r∗G − d̄r∗G

)
√

2 s∗r∗G

, and (4)

F ∗∗ is distribution of τ ∗∗r∗∗G
=

√
n
(
d̄∗∗r∗∗G

− d̄∗r∗∗G

)
√

2 s∗∗r∗∗G

. (5)

Given a bootstrap sample, say the lth of L bootstrapped samples, and associated

value τ ∗r∗G,l one can compute M nested bootstrap samples with associated values

τ ∗∗r∗∗G ,lm
for m = 1 . . . M . Then an estimate of the bias between F ∗ and F ∗∗ can be

obtained by computing

B =
1

L

L∑
l=1

(
1

M

M∑
m=1

τ ∗∗r∗∗G ,lm − τ ∗r∗G,l

)
. (6)

Given that the basic bootstrap estimate F ∗ is derived from the empirical distri-

bution of

{τ ∗r∗G,1, τ
∗
r∗G,2, . . . , τ

∗
r∗G,L} (7)

a bias corrected version F ∗
B may be given by the empirical distribution of

{τ ∗r∗G,1 −B, τ ∗r∗G,2 −B, . . . , τ ∗r∗G,L −B} (8)
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A second type of correction is similar in spirit but seeks to correct for the per-

centiles associated with confidence intervals rather than just the overall average.

The discussion here follows that presented in Chapter 5 of Davison and Hinkley,

1997 and is only sketched here. For a given α ∈ (0, 1) we are ideally interested in

determining F−1
α that satisfies

Pr
(
τrG

≤ F−1
α

)
= α (9)

however we can only observe the bootstrap approximation F ∗−1
α . Because there

may exist some bias in the bootstrap version it is likely

Pr
(
τrG

≤ F ∗−1
α

)
6= α (10)

and we would like to determine a corrected percentile, q(α) that satisfies

Pr
(
τrG

≤ F ∗−1
q(α)

)
= α. (11)

As before, estimating this correction requires a nested bootstrap procedure. The

estimate of the correction, q̂(α) satisfies

Pr∗
(
τ ∗r∗G ≤ F ∗∗−1

q̂(α)

)
= α (12)

where Pr∗ indicates the probability is taken with respect to the bootstrap distri-

bution obtained by resampling and F ∗∗−1 is the empirical distribution in (5). To

obtain q̂(α) we again suppose there are L initial bootstrap samples and M nested

bootstrap samples for each of the L initial samples. Define

u∗l =
1

M

M∑
m=1

I{τ ∗r∗G,l ≤ τ ∗∗r∗∗G ,lm} (13)
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(where I{} is an indicator function taking the value 1 when τ ∗r∗G,l ≤ τ ∗∗r∗∗G ,lm
and

0 otherwise) and order the obtained values {u∗1, u∗2, . . . , u∗L}. Then q̂(α) is the

α · 100th percentile of the {u∗l , l = 1 . . . L}, or in other words, the (L + 1)αth

ordered value of {u∗1, u∗2, . . . , u∗L}. Once q̂(α) has been obtained for relevant values

of α one can derive an alternative form of a 95% confidence interval, e.g.

µrG
∈

[
d̄rG

− srG

√
2√
n

F ∗−1
q̂(.975), d̄rG

− srG

√
2√
n

F ∗−1
q̂(.025)

]
. (14)

This nested percentile method and the bias correction method indicated above in

(8) are compared to the basic bootstrap method (as described in (4) i.e. without

correction from a second order level of bootstrapping) and traditional t−statistic

approach in Table 1. The table is a more comprehensive examination than Table

1 presented in the paper. Results correspond to 1000 simulations; each simulation

corresponds to a realization of Xij and Yij values and is associated with L = 500

first level bootstrap simulations and M = 250 second level bootstrap values.

Table 1 indicates that all the bootstrap methods have about the same coverage

probabilities for the 90% and 95% interval regions though the basic bootstrap ap-

pears to fare worse for the 50% and 80% intervals. All perform much better than

the näıve approach. A second section of the table shows that though overall cover-

age probabilities may be good for the two methods using a second level bootstrap,

these intervals still fail to do a good job at eliminating all the overestimation bias.

For instance, for the nested percentile method the true value of µrG
lies in the re-

gion
(
−∞, d̄rG

− srG

√
2√
n
F ∗−1

q̂(.75)

)
39% of the time instead of the desired rate of 25%.

Similarly, µrG
lies in the complementary region

(
d̄rG

− srG

√
2√
n
F ∗−1

q̂(.25),∞
)

11% of the
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time. This indicates that point estimates, perhaps based upon d̄rG
− srG

√
2√
n
F ∗−1

q̂(.50),

are likely to still overestimate µrG
. In the simulations with 444 variables this

asymmetry is more severe for the basic bootstrap leading to the recommendation

to use either of the methods requiring a second level of bootstrapping.

Table 2 provides similar information for the methods when only 10 variables

are used and the degree of overestimation is somewhat less. Here the nested

percentile method has the best coverage though the length of the intervals are 10-

15% longer than those for the other bootstrap methods. Also, the bias corrected

version does not fare as well in terms of coverage probabilities though it and the

nested percentile appear to exhibit less asymmetry in the extreme regions. From

these results and those using 444 variables it appears the nested percentile method

may be preferable though it typically has the widest intervals.

Table 3 completes the more comprehensive examination with the case when

overestimation is not likely to occur. Here we see that all methods perform ap-

proximately equally well though the nested method shows perhaps some degree of

asymmetry and has confidence intervals that are slightly wider. However, given

its relatively good performance over the other two simulation situations it may

still be the most appropriate choice among those presented here.

The asymmetry is a problem that deserves further investigation. It may be

that better bootstrap methods may reduce this tendency. Also, it is possible this

asymmetry arises because of systematic differences between the true pattern of

effect sizes and the observed pattern of effect sizes (e.g. the proportion of true
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effect sizes of 0 is likely much higher than the proportion of observed effect sizes

equal to or very near 0). Future work will try to resolve this issue.
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Coverage Characteristics

Bias Nested Näıve

Basic Corrected Percentile t−statistic

Nominal Coverage and Coverage and Coverage and Coverage and

Interval Mean Length Mean Length Mean Length Mean Length

25th − 75th 41%, .46 50%, .46 50%, .48 3%, .39

10th − 90th 77%, .90 81%, .90 81%, .90 12%, .75

5th − 95th 90%, 1.18 92%, 1.18 91%, 1.18 22%, .97

2.5th − 97.5th 96%, 1.44 96%, 1.44 96%, 1.42 36%, 1.17

Asymmetry Characteristics

Bias Nested Näıve

Nominal Basic Corrected Percentile t−statistic

Intervals Coverage Coverage Coverage Coverage

0th − 25th, 75th − 100th 53%, 6% 39%, 11% 39%, 11% 96%, 1%

0th − 10th, 90th − 100th 22%, 1% 15%, 4% 15%, 4% 88%, 0%

0th − 5th, 95th − 100th 9%, 1% 7%, 1% 8%, 1% 78%, 0%

0th − 2.5th, 97.5th − 100th 4%, 0% 3%, 1% 3%, 1% 64%, 0%

Table 1. Confidence Interval Characteristics for µrG
with n=14,

G=444, Effect Sizes Evenly spaced in (0, 2], Variables Independent,

1000 simulations
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Coverage Characteristics

Bias Nested Näıve

Basic Corrected Percentile t−statistic

Nominal Coverage and Coverage and Coverage and Coverage and

Interval Mean Length Mean Length Mean Length Mean Length

25th − 75th 45%, .44 43%, .44 49%, .49 34%, .48

10th − 90th 76%, .85 71%, .85 77%, .96 54%, .93

5th − 95th 87%, 1.10 83%, 1.10 88%, 1.25 74%, 1.21

2.5th − 97.5th 92%, 1.33 90%, 1.33 93%, 1.53 84%, 1.45

Asymmetry Characteristics

Bias Nested Näıve

Nominal Basic Corrected Percentile t−statistic

Intervals Coverage Coverage Coverage Coverage

0th − 25th, 75th − 100th 37%, 18% 31%, 26% 28%, 23% 75%, 1%

0th − 10th, 90th − 100th 16%, 8% 15%, 14% 13%, 10% 46%, 0%

0th − 5th, 95th − 100th 9%, 4% 8%, 9% 7%, 6% 26%, 0%

0th − 2.5th, 97.5th − 100th 5%, 3% 5%, 5% 4%, 3% 16%, 0%

Table 2. Confidence Interval Characteristics for µrG
with n=14,

G=10, Effect Sizes Evenly spaced in (0, 1], Variables Independent,

1000 simulations
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Coverage Characteristics

Bias Nested Näıve

Basic Corrected Percentile t−statistic

Nominal Coverage and Coverage and Coverage and Coverage and

Interval Mean Length Mean Length Mean Length Mean Length

25th − 75th 48%, .51 48%, .51 48%, .52 50%, .51

10th − 90th 77%, .98 78%, .98 79%, 1.00 78%, 1.0

5th − 95th 88%, 1.28 89%, 1.28 89%, 1.32 89%, 1.27

2.5th − 97.5th 93%, 1.55 94%, 1.55 94%, 1.61 94%, 1.54

Asymmetry Characteristics

Bias Nested Näıve

Nominal Basic Corrected Percentile t−statistic

Intervals Coverage Coverage Coverage Coverage

0th − 25th, 75th − 100th 26%, 26% 26%, 26% 27%, 25% 25%, 25%

0th − 10th, 90th − 100th 12%, 10% 12%, 10% 13%, 8% 11%, 11%

0th − 5th, 95th − 100th 6%, 6% 6%, 6% 7%, 4% 5%, 6%

0th − 2.5th, 97.5th − 100th 3%, 4% 3%, 3% 4%, 2% 3%, 3%

Table 3. Confidence Interval Characteristics for µrG
with n=14,

G=10, Effect Sizes = {3,0,0,0,0,0,0,0,0,0}, Variables Independent,

1000 simulations


